Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Mol Biol Cell ; 35(4): ar60, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38446618

ABSTRACT

It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.


Subject(s)
Saccharomyces cerevisiae , Signal Transduction , Saccharomyces cerevisiae/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation
2.
PLoS Comput Biol ; 20(3): e1011933, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512898

ABSTRACT

This perspective is part of an international effort to improve epidemiological models with the goal of reducing the unintended consequences of infectious disease interventions. The scenarios in which models are applied often involve difficult trade-offs that are well recognised in public health ethics. Unless these trade-offs are explicitly accounted for, models risk overlooking contested ethical choices and values, leading to an increased risk of unintended consequences. We argue that such risks could be reduced if modellers were more aware of ethical frameworks and had the capacity to explicitly account for the relevant values in their models. We propose that public health ethics can provide a conceptual foundation for developing this capacity. After reviewing relevant concepts in public health and clinical ethics, we discuss examples from the COVID-19 pandemic to illustrate the current separation between public health ethics and infectious disease modelling. We conclude by describing practical steps to build the capacity for ethically aware modelling. Developing this capacity constitutes a critical step towards ethical practice in computational modelling of public health interventions, which will require collaboration with experts on public health ethics, decision support, behavioural interventions, and social determinants of health, as well as direct consultation with communities and policy makers.


Subject(s)
Communicable Diseases , Pandemics , Humans , Pandemics/prevention & control , Public Health , Communicable Diseases/epidemiology , Computer Simulation
3.
Microbiol Spectr ; 12(4): e0288523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38426747

ABSTRACT

SARS-CoV-2 spreads pandemically since 2020; in 2021, effective vaccinations became available and vaccination campaigns commenced. Still, it is hard to track the spread of the infection or to assess vaccination success in the broader population. Measuring specific anti-SARS-CoV-2 antibodies is the most effective tool to track the spread of the infection or successful vaccinations. The need for venous-blood sampling however poses a significant barrier for large studies. Dried-blood-spots on filter-cards (DBS) have been used for SARS-CoV-2 serology in our laboratory, but so far not to follow quantitative SARS-CoV-2 anti-spike reactivity in a longitudinal cohort. We developed a semi-automated protocol or quantitative SARS-CoV-2 anti-spike serology from self-sampled DBS, validating it in a cohort of matched DBS and venous-blood samples (n = 825). We investigated chromatographic effects, reproducibility, and carry-over effects and calculated a positivity threshold as well as a conversion formula to determine the quantitative binding units in the DBS with confidence intervals. Sensitivity and specificity reached 96.63% and 97.81%, respectively, compared to the same test performed in paired venous samples. Between a signal of 0.018 and 250 U/mL, we calculated a correction formula. Measuring longitudinal samples during vaccinations, we demonstrated relative changes in titers over time in several individuals and in a longitudinal cohort over four follow-ups. DBS sampling has proven itself for anti-nucleocapsid serosurveys in our laboratory. Similarly, anti-spike high-throughput DBS serology is feasible as a complementary assay. Quantitative measurements are accurate enough to follow titer dynamics in populations also after vaccination campaigns. This work was supported by the Bavarian State Ministry of Science and the Arts; LMU University Hospital, LMU Munich; Helmholtz Center Munich; University of Bonn; University of Bielefeld; German Ministry for Education and Research (proj. nr.: 01KI20271 and others) and the Medical Biodefense Research Program of the Bundeswehr Medical Service. Roche Diagnostics provided kits and machines for analyses at discounted rates. The project is funded also by the European-wide Consortium ORCHESTRA. The ORCHESTRA project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101016167. The views expressed in this publication are the sole responsibility of the author, and the Commission is not responsible for any use that may be made of the information it contains.IMPORTANCESARS-CoV-2 has been spreading globally as a pandemic since 2020. To determine the prevalence of SARS-CoV-2 antibodies among populations, the most effective public health tool is measuring specific anti-SARS-CoV-2 antibodies induced by infection or vaccination. However, conducting large-scale studies that involve venous-blood sampling is challenging due to the associated feasibility and cost issues. A more cost-efficient and less invasive method for SARS-CoV-2 serological testing is using Dried-Blood-Spots on filter cards (DBS). In this paper, we have developed a semi-automated protocol for quantifying SARS-CoV-2 anti-spike antibodies from self-collected DBS. Our laboratory has previously successfully used DBS sampling for anti-nucleocapsid antibody surveys. Likewise, conducting high-throughput DBS serology for anti-spike antibodies is feasible as an additional test that can be performed using the same sample preparation as the anti-nucleocapsid analysis. The quantitative measurements obtained are accurate enough to track the dynamics of antibody levels in populations, even after vaccination campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reproducibility of Results , COVID-19/diagnosis , Phlebotomy , Antibodies, Viral
4.
Vaccine ; 42(6): 1383-1391, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307744

ABSTRACT

Aotearoa New Zealand implemented a Covid-19 elimination strategy in 2020 and 2021, which enabled a large majority of the population to be vaccinated before being exposed to the virus. This strategy delivered one of the lowest pandemic mortality rates in the world. However, quantitative estimates of the population-level health benefits of vaccination are lacking. Here, we use a validated mathematical model of Covid-19 in New Zealand to investigate counterfactual scenarios with differing levels of vaccine coverage in different age and ethnicity groups. The model builds on earlier research by adding age- and time-dependent case ascertainment, the effect of antiviral medications, improved hospitalisation rate estimates, and the impact of relaxing control measures. The model was used for scenario analysis and policy advice for the New Zealand Government in 2022 and 2023. We compare the number of Covid-19 hospitalisations, deaths, and years of life lost in each counterfactual scenario to a baseline scenario that is fitted to epidemiological data between January 2022 and June 2023. Our results estimate that vaccines saved 6650 (95% credible interval [4424, 10180]) lives, and prevented 74500 [51000, 115400] years of life lost and 45100 [34400, 55600] hospitalisations during this 18-month period. Making the same comparison before the benefit of antiviral medications is accounted for, the estimated number of lives saved by vaccines increases to 7604 [5080, 11942]. Due to inequities in the vaccine rollout, vaccination rates among Maori were lower than in people of European ethnicity. Our results show that, if vaccination rates had been equitable, an estimated 11%-26% of the 292 Maori Covid-19 deaths that were recorded in this time period could have been prevented. We conclude that Covid-19 vaccination greatly reduced health burden in New Zealand and that equity needs to be a key focus of future vaccination programmes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Maori People , New Zealand/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Antiviral Agents
5.
Emerg Infect Dis ; 30(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38190760

ABSTRACT

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Public Health
6.
PLoS Comput Biol ; 20(1): e1011752, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190380

ABSTRACT

Near-term forecasting of infectious disease incidence and consequent demand for acute healthcare services can support capacity planning and public health responses. Despite well-developed scenario modelling to support the Covid-19 response, Aotearoa New Zealand lacks advanced infectious disease forecasting capacity. We develop a model using Aotearoa New Zealand's unique Covid-19 data streams to predict reported Covid-19 cases, hospital admissions and hospital occupancy. The method combines a semi-mechanistic model for disease transmission to predict cases with Gaussian process regression models to predict the fraction of reported cases that will require hospital treatment. We evaluate forecast performance against out-of-sample data over the period from 2 October 2022 to 23 July 2023. Our results show that forecast performance is reasonably good over a 1-3 week time horizon, although generally deteriorates as the time horizon is lengthened. The model has been operationalised to provide weekly national and regional forecasts in real-time. This study is an important step towards development of more sophisticated situational awareness and infectious disease forecasting tools in Aotearoa New Zealand.


Subject(s)
COVID-19 , Communicable Diseases , Humans , COVID-19/epidemiology , New Zealand/epidemiology , Forecasting , Hospitalization
7.
J Clin Virol ; 170: 105622, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091664

ABSTRACT

BACKGROUND: SARS-CoV-2 variants of concern (VOC) may result in breakthrough infections (BTIs) in vaccinated individuals. The aim of this study was to investigate the effects of full primary (two-dose) COVID-19 vaccination with wild-type-based SARS-CoV-2 vaccines on symptoms and immunogenicity of SARS-CoV-2 VOC BTIs. METHODS: In a longitudinal multicenter controlled cohort study in Bavaria, Germany, COVID-19 vaccinated and unvaccinated non-hospitalized individuals were prospectively enrolled within 14 days of a PCR-confirmed SARS-CoV-2 infection. Individuals were visited weekly up to 4 times, performing a structured record of medical data and viral load assessment. SARS-CoV-2-specific antibody response was characterized by anti-spike-(S)- and anti-nucleocapsid-(N)-antibody concentrations, anti-S-IgG avidity and neutralization capacity. RESULTS: A total of 300 individuals (212 BTIs, 88 non-BTIs) were included with VOC Alpha or Delta SARS-CoV-2 infections. Full primary COVID-19 vaccination provided a significant effectiveness against five symptoms (relative risk reduction): fever (33 %), cough (21 %), dysgeusia (22 %), dizziness (52 %) and nausea/vomiting (48 %). Full primary vaccinated individuals showed significantly higher 50 % inhibitory concentration (IC50) values against the infecting VOC compared to unvaccinated individuals at week 1 (269 vs. 56, respectively), and weeks 5-7 (1,917 vs. 932, respectively) with significantly higher relative anti-S-IgG avidity (78% vs. 27 % at week 4, respectively). CONCLUSIONS: Full primary COVID-19 vaccination reduced symptom frequencies in non-hospitalized individuals with BTIs and elicited a more rapid and longer lasting neutralization capacity against the infecting VOC compared to unvaccinated individuals. These results support the recommendation to offer at least full primary vaccination to all adults to reduce disease severity caused by immune escape-variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , Breakthrough Infections , Cohort Studies , Prospective Studies , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Vaccination
8.
N Z Med J ; 136(1583): 67-91, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37797257

ABSTRACT

In this article we review the COVID-19 pandemic experience in Aotearoa New Zealand and consider the optimal ongoing response strategy. We note that this pandemic virus looks likely to result in future waves of infection that diminish in size over time, depending on such factors as viral evolution and population immunity. However, the burden of disease remains high with thousands of infections, hundreds of hospitalisations and tens of deaths each week, and an unknown burden of long-term illness (long COVID). Alongside this there is a considerable burden from other important respiratory illnesses, including influenza and RSV, that needs more attention. Given this impact and the associated health inequities, particularly for Maori and Pacific Peoples, we consider that an ongoing respiratory disease mitigation strategy is appropriate for New Zealand. As such, the previously described "vaccines plus" approach (involving vaccination and public health and social measures), should now be integrated with the surveillance and control of other important respiratory infections. Now is also a time for New Zealand to build on the lessons from the COVID-19 pandemic to enhance preparedness nationally and internationally. New Zealand's experience suggests elimination (or ideally exclusion) should be the default first choice for future pandemics of sufficient severity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , New Zealand/epidemiology , Post-Acute COVID-19 Syndrome , Pandemics/prevention & control , Maori People
9.
BMC Infect Dis ; 23(1): 466, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442952

ABSTRACT

BACKGROUND: Population-based serological studies allow to estimate prevalence of SARS-CoV-2 infections despite a substantial number of mild or asymptomatic disease courses. This became even more relevant for decision making after vaccination started. The KoCo19 cohort tracks the pandemic progress in the Munich general population for over two years, setting it apart in Europe. METHODS: Recruitment occurred during the initial pandemic wave, including 5313 participants above 13 years from private households in Munich. Four follow-ups were held at crucial times of the pandemic, with response rates of at least 70%. Participants filled questionnaires on socio-demographics and potential risk factors of infection. From Follow-up 2, information on SARS-CoV-2 vaccination was added. SARS-CoV-2 antibody status was measured using the Roche Elecsys® Anti-SARS-CoV-2 anti-N assay (indicating previous infection) and the Roche Elecsys® Anti-SARS-CoV-2 anti-S assay (indicating previous infection and/or vaccination). This allowed us to distinguish between sources of acquired antibodies. RESULTS: The SARS-CoV-2 estimated cumulative sero-prevalence increased from 1.6% (1.1-2.1%) in May 2020 to 14.5% (12.7-16.2%) in November 2021. Underreporting with respect to official numbers fluctuated with testing policies and capacities, becoming a factor of more than two during the second half of 2021. Simultaneously, the vaccination campaign against the SARS-CoV-2 virus increased the percentage of the Munich population having antibodies, with 86.8% (85.5-87.9%) having developed anti-S and/or anti-N in November 2021. Incidence rates for infections after (BTI) and without previous vaccination (INS) differed (ratio INS/BTI of 2.1, 0.7-3.6). However, the prevalence of infections was higher in the non-vaccinated population than in the vaccinated one. Considering the whole follow-up time, being born outside Germany, working in a high-risk job and living area per inhabitant were identified as risk factors for infection, while other socio-demographic and health-related variables were not. Although we obtained significant within-household clustering of SARS-CoV-2 cases, no further geospatial clustering was found. CONCLUSIONS: Vaccination increased the coverage of the Munich population presenting SARS-CoV-2 antibodies, but breakthrough infections contribute to community spread. As underreporting stays relevant over time, infections can go undetected, so non-pharmaceutical measures are crucial, particularly for highly contagious strains like Omicron.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Hepatitis Delta Virus , COVID-19 Vaccines , Pandemics , Antibodies, Viral
10.
Viruses ; 15(7)2023 07 18.
Article in English | MEDLINE | ID: mdl-37515259

ABSTRACT

Antibody studies analyze immune responses to SARS-CoV-2 vaccination and infection, which is crucial for selecting vaccination strategies. In the KoCo-Impf study, conducted between 16 June and 16 December 2021, 6088 participants aged 18 and above from Munich were recruited to monitor antibodies, particularly in healthcare workers (HCWs) at higher risk of infection. Roche Elecsys® Anti-SARS-CoV-2 assays on dried blood spots were used to detect prior infections (anti-Nucleocapsid antibodies) and to indicate combinations of vaccinations/infections (anti-Spike antibodies). The anti-Spike seroprevalence was 94.7%, whereas, for anti-Nucleocapsid, it was only 6.9%. HCW status and contact with SARS-CoV-2-positive individuals were identified as infection risk factors, while vaccination and current smoking were associated with reduced risk. Older age correlated with higher anti-Nucleocapsid antibody levels, while vaccination and current smoking decreased the response. Vaccination alone or combined with infection led to higher anti-Spike antibody levels. Increasing time since the second vaccination, advancing age, and current smoking reduced the anti-Spike response. The cumulative number of cases in Munich affected the anti-Spike response over time but had no impact on anti-Nucleocapsid antibody development/seropositivity. Due to the significantly higher infection risk faced by HCWs and the limited number of significant risk factors, it is suggested that all HCWs require protection regardless of individual traits.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Risk Factors , Health Personnel , Immunity , Immunization , Antibodies, Viral , Vaccination
11.
Diagnostics (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36980332

ABSTRACT

The currently prevailing variants of SARS-CoV-2 are subvariants of the Omicron variant. The aim of this study was to analyze the effect of mutations in the Spike protein of Omicron on the results Quan-T-Cell SARS-CoV-2 assays and Roche Elecsys anti-SARS-CoV-2 anti-S1. Omicron infected subjects ((n = 37), vaccinated (n = 20) and unvaccinated (n = 17)) were recruited approximately 3 weeks after a positive PCR test. The Quan-T-Cell SARS-CoV-2 assays (EUROIMMUN) using Wuhan and the Omicron adapted antigen assay and a serological test (Roche Elecsys anti-SARS-CoV-2 anti-S1) were performed. Using the original Wuhan SARS-CoV-2 IGRA TUBE, in 19 of 21 tested Omicron infected subjects, a positive IFNy response was detected, while 2 non-vaccinated but infected subjects did not respond. The Omicron adapted antigen tube resulted in comparable results. In contrast, the serological assay detected a factor 100-fold lower median Spike-specific RBD antibody concentration in non-vaccinated Omicron infected patients (n = 12) compared to patients from the pre Omicron era (n = 12) at matched time points, and eight individuals remained below the detection threshold for positivity. For vaccinated subjects, the Roche assay detected antibodies in all subjects and showed a 400 times higher median specific antibody concentration compared to non-vaccinated infected subjects in the pre-Omicron era. Our results suggest that Omicron antigen adapted IGRA stimulator tubes did not improve detection of SARS-CoV-2-specific T-cell responses in the Quant-T-Cell-SARS-CoV-2 assay. In non-vaccinated Omicron infected individuals, the Wuhan based Elecsys anti-SARS-CoV-2 anti-S1 serological assay results in many negative results at 3 weeks after diagnosis.

12.
J R Soc Interface ; 20(199): 20220698, 2023 02.
Article in English | MEDLINE | ID: mdl-36722072

ABSTRACT

New Zealand experienced a wave of the Omicron variant of SARS-CoV-2 in early 2022, which occurred against a backdrop of high two-dose vaccination rates, ongoing roll-out of boosters and paediatric doses, and negligible levels of prior infection. New Omicron subvariants have subsequently emerged with a significant growth advantage over the previously dominant BA.2. We investigated a mathematical model that included waning of vaccine-derived and infection-derived immunity, as well as the impact of the BA.5 subvariant which began spreading in New Zealand in May 2022. The model was used to provide scenarios to the New Zealand Government with differing levels of BA.5 growth advantage, helping to inform policy response and healthcare system preparedness during the winter period. In all scenarios investigated, the projected peak in new infections during the BA.5 wave was smaller than in the first Omicron wave in March 2022. However, results indicated that the peak hospital occupancy was likely to be higher than in March 2022, primarily due to a shift in the age distribution of infections to older groups. We compare model results with subsequent epidemiological data and show that the model provided a good projection of cases, hospitalizations and deaths during the BA.5 wave.


Subject(s)
COVID-19 , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , New Zealand/epidemiology , SARS-CoV-2 , Hospitalization
13.
R Soc Open Sci ; 10(2): 220766, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36756071

ABSTRACT

For the first 18 months of the COVID-19 pandemic, New Zealand used an elimination strategy to suppress community transmission of SARS-CoV-2 to zero or very low levels. In late 2021, high vaccine coverage enabled the country to transition away from the elimination strategy to a mitigation strategy. However, given negligible levels of immunity from prior infection, this required careful planning and an effective public health response to avoid uncontrolled outbreaks and unmanageable health impacts. Here, we develop an age-structured model for the Delta variant of SARS-CoV-2 including the effects of vaccination, case isolation, contact tracing, border controls and population-wide control measures. We use this model to investigate how epidemic trajectories may respond to different control strategies, and to explore trade-offs between restrictions in the community and restrictions at the border. We find that a low case tolerance strategy, with a quick change to stricter public health measures in response to increasing cases, reduced the health burden by a factor of three relative to a high tolerance strategy, but almost tripled the time spent in national lockdowns. Increasing the number of border arrivals was found to have a negligible effect on health burden once high vaccination rates were achieved and community transmission was widespread.

14.
Front Immunol ; 13: 1026473, 2022.
Article in English | MEDLINE | ID: mdl-36582222

ABSTRACT

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Nucleocapsid
15.
Epidemics ; 41: 100657, 2022 12.
Article in English | MEDLINE | ID: mdl-36427472

ABSTRACT

Aotearoa New Zealand experienced a wave of the Omicron variant of SARS-CoV-2 in 2022 with around 200 confirmed cases per 1000 people between January and May. Waning of infection-derived immunity means people become increasingly susceptible to re-infection with SARS-CoV-2 over time. We investigated a model that included waning of vaccine-derived and infection-derived immunity under scenarios representing different levels of behavioural change relative to the first Omicron wave. Because the durability of infection-derived immunity is a key uncertainty in epidemiological models, we investigated outcomes under different assumptions about the speed of waning. The model was used to provide scenarios to the New Zealand Government, helping to inform policy response and healthcare system preparedness ahead of the winter respiratory illness season. In all scenarios investigated, a second Omicron wave was projected to occur in the second half of 2022. The timing of the peak depended primarily on the speed of waning and was typically between August and November. The peak number of daily infections in the second Omicron wave was smaller than in the first Omicron wave. Peak hospital occupancy was also generally lower than in the first wave but was sensitive to the age distribution of infections. A scenario with increased contact rates in older groups had higher peak hospital occupancy than the first wave. Scenarios with relatively high transmission, whether a result of relaxation of control measures or voluntary behaviour change, did not necessarily lead to higher peaks. However, they generally resulted in more sustained healthcare demand (>250 hospital beds throughout the winter period). The estimated health burden of Covid-19 in the medium term is sensitive to the strength and durability of infection-derived and hybrid immunity against reinfection and severe illness, which are uncertain.


Subject(s)
COVID-19 , Reinfection , Humans , Aged , Reinfection/epidemiology , SARS-CoV-2 , New Zealand/epidemiology , COVID-19/epidemiology
16.
Sci Rep ; 12(1): 20451, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443439

ABSTRACT

Epidemiological models range in complexity from relatively simple statistical models that make minimal assumptions about the variables driving epidemic dynamics to more mechanistic models that include effects such as vaccine-derived and infection-derived immunity, population structure and heterogeneity. The former are often fitted to data in real-time and used for short-term forecasting, while the latter are more suitable for comparing longer-term scenarios under differing assumptions about control measures or other factors. Here, we present a mechanistic model of intermediate complexity that can be fitted to data in real-time but is also suitable for investigating longer-term dynamics. Our approach provides a bridge between primarily empirical approaches to forecasting and assumption-driven scenario models. The model was developed as a policy advice tool for New Zealand's 2021 outbreak of the Delta variant of SARS-CoV-2 and includes the effects of age structure, non-pharmaceutical interventions, and the ongoing vaccine rollout occurring during the time period studied. We use an approximate Bayesian computation approach to infer the time-varying transmission coefficient from real-time data on reported cases. We then compare projections of the model with future, out-of-sample data. We find that this approach produces a good fit with in-sample data and reasonable forward projections given the inherent limitations of predicting epidemic dynamics during periods of rapidly changing policy and behaviour. Results from the model helped inform the New Zealand Government's policy response throughout the outbreak.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Seizures
17.
PeerJ ; 10: e14119, 2022.
Article in English | MEDLINE | ID: mdl-36275456

ABSTRACT

During an epidemic, real-time estimation of the effective reproduction number supports decision makers to introduce timely and effective public health measures. We estimate the time-varying effective reproduction number, Rt , during Aotearoa New Zealand's August 2021 outbreak of the Delta variant of SARS-CoV-2, by fitting the publicly available EpiNow2 model to New Zealand case data. While we do not explicitly model non-pharmaceutical interventions or vaccination coverage, these two factors were the leading drivers of variation in transmission in this period and we describe how changes in these factors coincided with changes in Rt . Alert Level 4, New Zealand's most stringent restriction setting which includes stay-at-home measures, was initially effective at reducing the median Rt to 0.6 (90% CrI 0.4, 0.8) on 29 August 2021. As New Zealand eased certain restrictions and switched from an elimination strategy to a suppression strategy, Rt subsequently increased to a median 1.3 (1.2, 1.4). Increasing vaccination coverage along with regional restrictions were eventually sufficient to reduce Rt below 1. The outbreak peaked at an estimated 198 (172, 229) new infected cases on 10 November, after which cases declined until January 2022. We continue to update Rt estimates in real time as new case data become available to inform New Zealand's ongoing pandemic response.


Subject(s)
COVID-19 , Spiders , Animals , SARS-CoV-2 , COVID-19/epidemiology , Basic Reproduction Number , New Zealand/epidemiology
18.
J Infect Dis ; 227(1): 9-17, 2022 12 28.
Article in English | MEDLINE | ID: mdl-35876500

ABSTRACT

BACKGROUND: Reverse transcription polymerase chain reaction (RT-PCR) tests are the gold standard for detecting recent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Reverse transcription PCR sensitivity varies over the course of an individual's infection, related to changes in viral load. Differences in testing methods, and individual-level variables such as age, may also affect sensitivity. METHODS: Using data from New Zealand, we estimate the time-varying sensitivity of SARS-CoV-2 RT-PCR under varying temporal, biological, and demographic factors. RESULTS: Sensitivity peaks 4-5 days postinfection at 92.7% (91.4%-94.0%) and remains over 88% between 5 and 14 days postinfection. After the peak, sensitivity declined more rapidly in vaccinated cases compared with unvaccinated, females compared with males, those aged under 40 compared with over 40s, and Pacific peoples compared with other ethnicities. CONCLUSIONS: Reverse transcription PCR remains a sensitive technique and has been an effective tool in New Zealand's border and postborder measures to control coronavirus disease 2019. Our results inform model parameters and decisions concerning routine testing frequency.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Female , Humans , Aged , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods
19.
Math Biosci ; 351: 108885, 2022 09.
Article in English | MEDLINE | ID: mdl-35907510

ABSTRACT

Countries such as New Zealand, Australia and Taiwan responded to the Covid-19 pandemic with an elimination strategy. This involves a combination of strict border controls with a rapid and effective response to eliminate border-related re-introductions. An important question for decision makers is, when there is a new re-introduction, what is the right threshold at which to implement strict control measures designed to reduce the effective reproduction number below 1. Since it is likely that there will be multiple re-introductions, responding at too low a threshold may mean repeatedly implementing controls unnecessarily for outbreaks that would self-eliminate even without control measures. On the other hand, waiting for too high a threshold to be reached creates a risk that controls will be needed for a longer period of time, or may completely fail to contain the outbreak. Here, we use a highly idealised branching process model of small border-related outbreaks to address this question. We identify important factors that affect the choice of threshold in order to minimise the expect time period for which control measures are in force. We find that the optimal threshold for introducing controls decreases with the effective reproduction number, and increases with overdispersion of the offspring distribution and with the effectiveness of control measures. Our results are not intended as a quantitative decision-making algorithm. However, they may help decision makers understand when a wait-and-see approach is likely to be preferable over an immediate response.


Subject(s)
COVID-19 , Pandemics , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Humans , Models, Theoretical , Pandemics/prevention & control
20.
Infect Dis Model ; 7(2): 94-105, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35434431

ABSTRACT

New Zealand delayed the introduction of the Omicron variant of SARS-CoV-2 into the community by the continued use of strict border controls through to January 2022. This allowed time for vaccination rates to increase and the roll out of third doses of the vaccine (boosters) to begin. It also meant more data on the characteristics of Omicron became available prior to the first cases of community transmission. Here we present a mathematical model of an Omicron epidemic, incorporating the effects of the booster roll out and waning of vaccine-induced immunity, and based on estimates of vaccine effectiveness and disease severity from international data. The model considers differing levels of immunity against infection, severe illness and death, and ignores waning of infection-induced immunity. This model was used to provide an assessment of the potential impact of an Omicron wave in the New Zealand population, which helped inform government preparedness and response. At the time the modelling was carried out, the date of introduction of Omicron into the New Zealand community was unknown. We therefore simulated outbreaks with different start dates, as well as investigating different levels of booster uptake. We found that an outbreak starting on 1 February or 1 March led to a lower health burden than an outbreak starting on 1 January because of increased booster coverage, particularly in older age groups. We also found that outbreaks starting later in the year led to worse health outcomes than an outbreak starting on 1 March. This is because waning immunity in older groups started to outweigh the increased protection from higher booster coverage in younger groups. For an outbreak starting on 1 February and with high booster uptake, the number of occupied hospital beds in the model peaked between 800 and 3,300 depending on assumed transmission rates. We conclude that combining an accelerated booster programme with public health measures to flatten the curve are key to avoid overwhelming the healthcare system.

SELECTION OF CITATIONS
SEARCH DETAIL
...